Si₃O₁₀ Groups in the Crystal Structure of Ardennite*

By GABRIELLE DONNAY

Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008, U.S.A.

and R. Allmann

Crystallographic Laboratory, The Johns Hopkins University, Baltimore, Md. 21218, U.S.A.

(Received 2 August 1967)

Dedicated to Professor B.E. Warren for his 65th birthday

The rare mineral ardennite has the structural formula

 $Mn_2^{2+}(Mn^{2+},Ca)_2(AIOH)_4[(Mg,A1,Fe^{3+})OH]_2(As,V)O_4Si_3O_{10}(SiO_4)_2.$

Refined cell dimensions at 21° C (λ Cu K α_1 =1.54051 Å) are 8.7126 ± 0.0008 , 5.8108 ± 0.0008 , 18.5214 ± 0.0011 Å; Z=2, Pnmm, $D_{calc}=3.74$ g.cm⁻³, $D_{obs}=3.69-3.74$ g.cm⁻³. A total of 900 reflections were obtained on a Weissenberg-type automated Supper-Pace diffractometer supplemented by Weissenberg and precession film data. The structure was refined by least-squares method to a residual *R* of 7.0% including 110 unobserved reflections which were given a value of *F*(minimum)/ $\sqrt{3}$. The crystal structure can be derived from that of epidote by Ito-type twinning; it leads to the Si₃O₁₀ groups, which strengthen the bond chains along c. As in epidote, chains of octahedra sharing edges extend along b. They are here connected by the SiO₄ and Si₃O₁₀ groups. The cleavage is given as (001) in the literature for both epidote and ardennite; we determined it to be (100) for the two minerals. (As,V)O₄ tetrahedra do not share corners with SiO₄ tetrahedra. The polyhedra around Mn and especially (Mn,Ca) are irregular, suggesting abnormal magnetic behavior for ardennite. Bond lengths and temperature factors are normal. The average metal–oxygen distances are: for Mn 2.198 (5 nearest), for (Mn,Ca) 2.239 (5 nearest), for Al 1.911, for (Mg,Al,Fe) 2.011, for (As,V) 1.698, for Si 1.631 Å. The angle Si–O–Si is 126°.

Introduction

Ardennite is a rare arsenic-vanadium silicate, which has been found so far in the Ardennes, Belgium, in Piemont, Italy, and in the Jhabua district, India. The possibility that As and V might substitute for Si aroused our interest in the crystal structure. Professor J.D.H.Donnav collected a specimen at the type locality, Salm-Château, Ardennes, Belgium, which had been reopened on the occasion of the Liège meeting of the French Mineralogical Society in 1964. Other mineralogists did likewise, and as a result, Dr M.Semet and Professor J. Moreau (Semet & Moreau, 1965), of the University of Louvain, published a detailed account of ardennite mineralogy, with two new chemical analyses (Table 1) and a summary of previous work. They generously discontinued their own structure work when they heard of our efforts. A chemical analysis of a bulk sample (4.3 g) of our specimen was performed by C.O. Ingamells (Table 1).

Experimental procedure

The crystal chosen for data collection on the Weissenberg automated diffractometer has cell dimensions $a=8.7126\pm0.0008$, $b=5.8108\pm0.0008$, $c=18.5214\pm0.0011$ Å, at 21 °C. These were determined from back-reflection Weissenberg photographs about the *a* and *b*

Table 1.	. Recent ai	nalyses of a	rdennite
from	Salm-Ch	âteau, Belgi	um*
	1	2	3
SiO ₂	28.20	27.85	28.14
Al_2O_3	23.80	23.55	23.22
MnO	26.75	25.70	25.33
Mn_2O_3	-	-	0.00
As ₂ O ₅	11.25	13.25	9.85
V_2O_5	1.86	0.89	0.82
Fe_2O_3	1.22	0.86	1.50
FeO	0.00	0.00	0.00
MgO	2.30	2.30	3.83
CaO	1.17	1.17	1.50
CuO	0.57	0.26	0.46
Cr ₂ O ₃	-	-	0.12
Misc.†	-	-	0.11
F ₂	-	-	0.14
H_2O^+	5.10	5.10	5.04
H ₂ O-	0.02	0.05	0.00
Total	101.26	100.95	100.06
Less $O = I$			0.06

100.00

* 1, 2. Chemical analyses by O. Vandenberg, in Semet & Moreau (1965). 3. Chemical analysis by C. O. Ingamells (present paper).

† TiO_2 , 0.00; SnO_2 , 0.03; CoO, 0.01; NiO, 0.02; ZnO, 0.04; SrO, 0.00; BaO, 0.00; Na_2O , 0.01; K_2O , 0.00 (Sum = 0.11).

^{*} Work supported in part by National Science Foundation Grant GP-4947, awarded to the Johns Hopkins University.

axes, with Cu Ka radiation ($\lambda \alpha_1 = 1.54051$, $\lambda \alpha_2 = 1.54434$ Å), the measurements of which were treated by the Burnham LCLSQ least-squares refinement program. The crystal size is $0.05 \times 0.08 \times 0.10$ mm. The density, calculated for 2 formula units per cell with the help of Ingamells's analysis (Table 1) to obtain the formula weight, is 3.74 g.cm⁻³. Densities measured on the Berman balance range from 3.69 to 3.74 g.cm⁻³ for the crystals used in the electron-probe analysis. Semet & Moreau (1965, p. 559) concluded that 3.747 g.cm^{-3} should be considered the best experimental density for their ardennite sample. Systematic X-ray extinctions gave the aspect Pn * *. Statistical analyses of F and E values indicate the presence of a center of symmetry leading to the space group *Pnmm* (D_{2k}^{13}) ; for example $\langle |E| \rangle$ equals 0.788 and $\langle |E^2-1| \rangle$ equals 1.061 as compared with the theoretical values 0.798 and 0.968, respectively, for centrosymmetric space groups (Karle & Karle, 1963) and 0.89 and 0.74, respectively, for noncentrosymmetric space groups (Karle & Karle, 1966a).

Our choice of axes is different from that of Semet & Moreau (1965); it is meant to stress the structural relation between epidote and ardennite, first pointed out by Strunz (1935), which will be discussed below. In our setting, the unique, easy, and perfect cleavage is (100), which is to be expected from the structure as will be shown below. Since this finding disagrees with the data in the literature, where the cleavage is reported to be perpendicular to the 18.52 Å translation, we checked it repeatedly. Cleavage fragments were mounted with the cleavage face in polar position on the two-circle goniometer. Precession photographs always showed the E-W line to correspond to the 8.71 Å translation.

The intensities were measured on the diffractometer, in Cu $K\alpha$ radiation, from five *b*-axis levels containing 898 independent reflections, 275 of which were too weak to be observed. Weissenberg photographs, taken with Cu $K\alpha$ radiation and 12-hour exposures, permitted visual estimation of an additional 165 weak reflections, leaving only 110 unobserved ones. Two more reflections, 020 and 040, were obtained by visual estimation from a $(001)_0^*$ precession film taken with Mo K α radiation, thus bringing the total number of reflections to 900 (Table 5). The intensities were corrected for Lorentz and polarization factors; Burnham's GNABS program was used to eliminate absorption errors. An estimate of the accuracy of the observed F values, based on the scatter of 13 sets of symmetry-related strong and medium-strong test reflections, indicates a standard deviation for a single intensity measurement ranging from 3.4 to 25.0%, with an average value of 9.4%, so that an R value of 4.7% is the best we should hope for. A striking intensity feature is the relative faintness of all reflections with h+k=2n+1, indicating a pseudo C-centering of the structure. Reflections 10l; 14l; 0, 2n+1, 2n+1 are especially weak. This pseudo C-centering is also evident on a three-dimensional Patterson synthesis, where the peak at $\frac{1}{2}$ reaches half the height of the origin peak.

Structure determination

A comparison of the ardennite and epidote cell dimensions is indicative of an Ito-type twin relation between the two structures: a is equal to 8.71 Å for ardennite and 8.88 for epidote; b equals 5.81 and 5.63, respectively; c equals 18.52 for ardennite, is nearly equal to the $(2c \sin \beta)$ value of 18.32 for epidote (calculated from c=10.22 and $\beta=116^{\circ}20'$, values we obtained for epidote from the Strathcona Mine, Sudbury area, Ontario, Canada).

One of us (Donnay, 1965, 1966) tried long and unsuccessfully to obtain a reasonable trial structure, beginning with the known epidote structure determined by Belov & Rumanova (1953) and Ito, Morimoto & Sadanaga (1954). The Patterson synthesis was calculated for us by Dr W. Fischer at the University Computing Center in Marburg, Germany. When analyzed in a manner analogous to the one used by Ito *et al.* (1954), this Patterson synthesis showed all the cations except (Mg, Al) but did not bring out the oxygen framework of tetrahedra and octahedra.*

We then decided to try the Karle-Karle symbolic addition procedure (Karle & Karle, 1963, 1966b), which had not yet been used on any inorganic compound containing heavy atoms. We obtained advice and generous computing aid from Dr I.Karle, who used the programs written in her laboratory to obtain a calculation of the E values and a listing of all possible combinations $E_{\mathbf{h}}, E_{\mathbf{k}}, E_{\mathbf{h}+\mathbf{k}}$ with E > 1.5. A great number of strong relations between $E_{h21}, E_{\bar{h}2\bar{1}}, E_{040}$, and $E_{hk6}, E_{\bar{h}\bar{k}6}, E_{0012}$ proved the signs of 040 and 0012 to be positive. Three more signs were chosen to fix the origin and five more unknown signs were included in the unit factors a to e (Table 2). After two cycles of hand calculations with the Σ_2 equation, 30 signs were known; c was found to be negative and e positive. The third cycle gave 15 more signs, confirmed a to be

 Table 2. Starting set of reflections

 used for statistical method

h	k	l	E	Sign
4	2	5	3.93	+) from choice of
7	2	5	2.66	+ } origin
1	1	5	2.54	+ j - '
0	4	0	3.98	+) from strong
0	0	12	2.84	+ ∫ relations
8	0	2	2·63 a	a becomes $+1$
4	2	6	3·80 <i>b</i>	b doubtful
4	2	7	3·54 c	c becomes -1
2	2	5	2·94 <i>d</i>	d becomes $+1$
5	3	10	2·82 <i>e</i>	e becomes $+1$

* After the structure was solved, the coordinates of the cations as found in the Patterson synthesis were used for structure-factor calculations. In this calculation, 335 signs out of 369 for the reflections with $F_o > 36.0$ were found to be correct. At the time when we had only the data from the Patterson synthesis, however, we did not trust our results because we could not place the expected anion polyhedra around the observed cation sites.

Values obtained from Patterson function, P; from E map, followed by ρ_E maximum; final refined coordinates with standard deviation and isotropic temperature factor B from last isotropic refinement.

Atom and position occupied	From P	From E	<i>qE</i> Max.	Final	В (Ų)
(Mn,Ca) 4(<i>f</i>)	0·950	0.950 $\frac{1}{4}$ 0.155	396	0.9441 ± 2 $\frac{1}{4}$ 0.1554 ± 1	0•95±5
Mn 4(<i>f</i>)	0·400 ³ / ₄ 0·152	0·400 ³ / ₄ 0·160	392	0.3956 ± 3 $\frac{3}{4}$ 0.1600 ± 1	0.95 ± 5
Al(1) 4(c)	0 0 0	0 0 0	214	0 0 0	0.62 ± 7
Al(2) 4(<i>d</i>)	12 0 0	$ \begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \end{array} $	252	$ \frac{1}{2} $ 0 0	0.76 ± 7
(Mg,Al,Fe) 4(<i>e</i>)		0.675 - 0.002 $\frac{1}{4}$	213	$ \begin{array}{r} 0.6787 \pm 4 \\ - 0.0016 \pm 8 \\ \frac{1}{4} \end{array} $	0·96 ± 7
Si(1) 4(<i>f</i>)	0·750 ⅔ 0·096	0·767 ³ 0·100	340	0.7641 ± 4 $\frac{3}{4}$ 0.0970 ± 2	0.37 ± 6
Si(2) 4(<i>f</i>)	0·267	0·270 ↓ 0·097	264	0.2766 ± 4 $\frac{1}{4}$ 0.0951 ± 2	0.59 ± 7
Si(3) 2(<i>a</i>)	0·579 ¹ / ₄ ¹ / ₄	0·333 ¹ / ₄ ¹ / ₄	205	0.3412 ± 5 $\frac{1}{4}$ $\frac{1}{4}$	0.66 ± 9
(As,V) 2(<i>b</i>)	0·046 ³ / ₄	0·042 ³ / ₄	633	0.0426 ± 2 $\frac{3}{4}$ $\frac{1}{4}$	0.45 ± 5
O(1) 8(g)		0·117 0·025 - 0·078	104	$\begin{array}{c} 0.1284 \pm 6 \\ 0.0265 \pm 13 \\ - 0.0828 \pm 3 \end{array}$	0.82 ± 11
O(2) 8(g)		0.622 - 0.008 - 0.083	130	$\begin{array}{c} 0.6241 \pm 6 \\ -0.0207 \pm 13 \\ -0.0833 \pm 3 \end{array}$	0·81±11
O(3) 4(<i>f</i>)		0·133 ¹ / ₄ 0·042	84	0.1127 ± 9 $\frac{1}{4}$ 0.0526 ± 4	0·86±16
O(4) 4(<i>f</i>)		0·617 ³ / ₄ 0·040	123	0.6169 ± 10 $\frac{3}{4}$ 0.0415 ± 4	0·91 ± 16
O(5) 4(<i>e</i>)		$0.950 - 0.050 = \frac{1}{4}$	114	$0.9299 \pm 10 \\ - 0.0068 \pm 21 \\ \frac{1}{4}$	1.02 ± 15
O(6) 4(<i>e</i>)		0·438 0·042 4	88	0.4431 ± 9 0.0146 ± 20 $\frac{1}{4}$	1.06 ± 16
O(7) 4(<i>f</i>)		0·675 ³ / ₄ 0·175	105	0.6817 ± 10 $\frac{3}{4}$ 0.1776 ± 5	1·19±16
O(8) 4(<i>f</i>)		0.225 $\frac{1}{4}$ 0.182	81	0.2232 ± 9 $\frac{1}{4}$ 0.1805 ± 4	0.78 ± 16
O(9) 4(<i>f</i>)		0.200 $\frac{3}{4}$ 0.182	58	0.1540 ± 11 $\frac{3}{4}$ 0.1763 ± 5	1·36±17

Atom and position occupied OH(1) 4(<i>f</i>)	From P	From <i>E</i> 0·120 ³ / ₄ 0·028	<i>q_E M</i> ax. 101	Final 0.1128 ± 10 $\frac{3}{4}$ 0.0323 ± 5	<i>B</i> (Ų) 0·95 ±16
OH(2) 4(<i>f</i>)		0.620 $\frac{1}{4}$ 0.038	162	0.0323 ± 9 0.0149 ± 9 $\frac{1}{4}$ 0.0356 ± 4	0·35 ± 14
OH(3) 4(<i>f</i>)		0·700 ↓ 0·188	132	0.6973 ± 10 $\frac{1}{4}$ 0.1817 ± 4	0·91 ± 17

Table 3 (cont.)

Table 4. Anisotropic temperature factors for ardennite

The β_{ij} of the expression

$\exp\left[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+\beta_{23}2kl+\beta_{31}2lh+\beta_{12}2hk)\right]$

are converted into B_{ij} in Å², which are directly comparable with the *B* values of Table 3.

	B_{11}	B_{22}	B ₃₃	B_{12}	<i>B</i> ₁₃	B_{23}
(Mn,Ca)	$1 \cdot 18 + 8$	0.89 + 15	0.82 + 7	0	0.16 ± 6	0
Mn	1.03 ± 7	1.23 ± 15	0.79 ± 7	Ō	-0.15 ± 6	Ő
Al(1)	0.64 ± 11	0.78 ± 20	0.52 ± 11	-0.10 ± 14	0.04 ± 9	-0.05 ± 13
Al(2)	0.82 ± 12	0.91 ± 21	0.61 ± 11	0.06 ± 15	-0.02 ± 10	-0.01 ± 13
(Mg,Al,Fe)	1.29 ± 13	0.95 ± 22	0.76 ± 12	-0.08 ± 15	0	0
Si(1)	0.38 ± 11	0.56 ± 23	0.33 ± 11	0	-0.02 ± 9	0
Si(2)	0.56 ± 12	0.94 ± 24	0.47 ± 12	0	-0.03 ± 9	0
Si(3)	0.75 ± 16	0.80 ± 33	0.50 ± 16	0	0	0
(As,V)	0.63 ± 7	$0.27 \pm 14*$	0·45 <u>+</u> 6	0	0	0
O(1)	1.30 ± 21	0.88 ± 42	0.48 ± 21	-0.24 ± 23	-0.17 ± 17	-0.07 ± 21
O(2)	0.67 ± 20	1.03 ± 40	0.75 ± 21	0.20 ± 23	0.05 ± 17	0.28 ± 21
O(3)	0.72 ± 31	1.92 ± 57	0.48 ± 31	Ō	-0.14 ± 25	$\overline{0}$
O(4)	0·96 ± 31	1.69 ± 57	0.50 ± 30	0	-0.01 ± 25	0
O(5)	1.39 ± 31	1.00 ± 50	0.88 ± 30	-0.13 ± 36	$\overline{0}$	0
O(6)	0·91 ± 30	1·43 <u>+</u> 53	1.22 ± 30	-0.03 ± 35	0	0
O(7)	1.01 ± 32	1.71 ± 63	0.74 ± 32	0	0.5 ± 27	0
O(8)	0.91 ± 30	0.33 ± 57	1.01 ± 32	0	-0.26 ± 25	0
O(9)	1.79 ± 36	1.26 ± 62	1.00 ± 33	0	0.35 ± 30	0
OH(1)	0.90 ± 32	1.08 ± 56	0.91 ± 33	0	0.24 ± 26	0
OH(2)	0.67 ± 26	$0.27 \pm 53*$	$0.27 \pm 29^{*}$	0	-0.13 ± 22	0
OH(3)	0.74 ± 31	0.91 ± 60	1.06 ± 34	0	0.42 ± 25	0

* Values were kept constant, because they tended to become negative.

positive, and indicated d to be very probably positive. There was no hint as yet of the correct sign of b. After the fifth cycle 95 out of 118 signs with E > 1.5 were known, still leaving b undetermined. Then, for both possible signs of b, three more Σ_2 cycles for all 168 E values > 1.3 were calculated by computer, immediately followed by a three-dimensional E map. In the case of b = +1, 159 signs could be determined, and ρ_{\min} in the E map was -178; whereas for b = -1, 150 signs could be determined, and ρ_{\min} was -185. The latter E map made no sense at all, but the one calculated with b = +1 showed all the atoms, the cations being nearly in the same places as in the Patterson synthesis. The peak heights gave a good indication of the chemical nature of the atoms (Table 3). By checking against the final calculated signs, only one out of these 159 signs was found to be wrong (that of 702).

Refinement of coordinates was carried out with the modified Busing-Martin-Levy least-squares program at The Johns Hopkins University Computing Center. For atomic scattering factors we used As³⁺ from International Tables for X-ray Crystallography, Vol.III, p. 206; Mn⁺, Ca⁺, Fe⁺, Al⁺, Mg²⁺, V³⁺, Si³⁺, and O⁻ calculated by Hanson, Herman, Lea & Skillman (1966). With isotropic temperature factors and F(unobserved) set equal to (1/l/3)F(minimum), the residual $R = \Sigma ||F_0| - |F_c|| / \Sigma ||F_0||$ dropped from 18.0 to 8.4%; continuing with anisotropic temperature factors the residual dropped to 7.9%. We experimented with refinement of the multiplier for various scattering factors but obtained no significant improvement.

Next we introduced anomalous dispersion corrections for all atoms, using the values of Dauben & Templeton (1955) and the SFLS5 least-squares program of Prewitt. The consequent deviations from 0(+)and 500 (-) for the phase angle, expressed in millicycles, run as high as 200 for several reflections (Table 5). Unobserved reflections are given the value $|F_{\min}|/3|$. The *R* value with isotropic temperature factors (Table 3) for all 900 reflections dropped to 7.5% and, continuing with anisotropic temperature factors (Table 4) came to 7.0%. For the 240 strongest reflections with $F_o \ge 50$ an *R* value of 4.7% is obtained, in good agreement with the accuracy of our intensity measurements.

A comparison of atomic coordinates given by the Patterson map, the E map, and the final refinement (Table 3) shows the close agreement between the initial coordinates obtained from the E map and the final, refined ones. The bond lengths and their Pauling bond strengths (Table 6), as well as oxygen-oxygen approaches (Table 7), all fall within normal limits. Pauling bond strengths have been related roughly to bond lengths for all the cations except aluminum and silicon.

Discussion

The new and unexpected feature of the ardennite structure consists in the Si₃O₁₀ groups of three tetrahedra, all pointing the same way and not alternating as in infinite chains, possessing symmetry 2mm, and Si–O–Si bond angles of 126°. The usual value for this angle is close to 135° in infinite chains. This tritetrahedral group occurs jointly with individual SiO₄ groups in the ratio 1:2. Liebau (1962) surveyed the known silicate structures and stated the following rule: *tetrahedral* groups that differ by more than one in the number of shared corners should not occur jointly in a silicate structure. Professor F. Liebau (personal communication) pointed out that ardennite is the third known exception to this rule; the other two are prehnite and zunyite.

The structural relationship with epidote is close indeed (Fig. 1): a mirror (001), passing through the origin of the cell, reflects the projected epidote structure in such a way that only very minor rearrangements in the immediate neighborhood of the mirror are needed to give ardennite (Fig. 2). In all the trial structures that we considered, we overlooked the possibility of placing one of the tetrahedra of the Si₂O₇ group on the 'Ito mirror', which thus reflects the second tetrahedron of the Si₂O₇ group on the other side, producing the Si₃O₁₀ group. The formulae for the cell content of epidote and half the cell content of ardennite can be written so as to show their structural relation:

The epidote structure is composed of five-membered 'mixed rings' of the 'chair form' consisting of an aluminum octahedron, a silicon tetrahedron, another aluminum octahedron, and two linked silicon tetrahedra. In ardennite, two of these mixed rings, in addition to sharing their octahedra, share the central tetrahedron of the Si₃O₁₀ group, forming a large bow-tie of two five-membered rings. Inversion through the centers of symmetry at the Al sites in both structures reproduces the individual rings or bow-ties and extends the chains along **c**. Combined with the chains of octahedra along **b**, the structures can be considered to consist of thick sheets parallel to (100). Neither mineral species can be

Fig.1. The epidote structure (ten cells in all, after *Ito et al.*, 1954), projected on (010). The Ito mirrors, through the cell origin, are a distance d(001) apart. The outline of the orthorhombic cell related to that of ardennite, also projected on (010), is shown with heavy lines.

Table 5. Observed and calculated structure factors*

,	0,0,L 396 468	545	21	216	216	81	8	177	150 703	530 510	18 19	190 264	268 284	519 521	6 7	253 405	292 427	531 41
-	654 680	978	•	5,	٥, ٢			•.•			20	245	254	38	8	163	152	14
ä	561 585	12	ĩ	137	78	153	1	365	317	13	••					0,	2.L	
10 12	988 1062 3221 3383	531	2	137 656	136	972	3	212	362 212	512	0	317	359	40	2	1206	2344	15
14	1145 1116	503	4	416	442	524	7	171	124	494	1	803 704	829 726	23	4	1965	1753	16 519
18	396 376	481	6	652	653	26	- 11	179	176	523	3	336	330	13		1393	1313	5
20 22	1430 1443	2C 732	7	579	566 189	528	15	216	242	526	5	397	395	544	12	114	177	857
	1.0.1		9	112	134	467	17	66*	23	593 85	67	115	100	97	14	1546	1526	2
0	275 258	11	ii	112	112	611	21	66*	37	4	8	452	482	17	18	162	164	585
2	227 208	507	13	251	224	505		1.	1.1		10	1249	1245	516	22	377	376	62
3	137 144	512 978	14	187 610	161 808	1C 29	0	282 366	268 412	452	11	599 350	590 331	533 30		· 1,	2.1	
Ś	323 320	20	16	437	463	530	2	624	571	515	13	298	341	28	c	508	628	510
7	239 243	526	18	273	256	41	-	272	217	954	15	163	167	64	2	636	557	
9	137 128	10	20	64.	66	497	6	1785	1612	13	17	427	479	535	4	441	372	507
10	346 333 230 218	515 2C		6,	0,1		, В	1464	1312	518 904	18	231	205	508	5 6	568	465	
12	158 137 64+ 35	998 585	0	266 425	271	561 509	. 10	115	75 1048	669 517	20	289	306	39	7	535 561	463 545	502
14	158 140	33	2	158	151	36	11	669	651	39	0	6,	1.1	29	9	486	500	11
16	137 152	č	-	1289	1300	16	13	491	508	995	i	66 •	93	545	ii	804	112	514
18	138 108	541	6	302	331	955	15	755	768	531	ŝ	66	40	13	13	539	532	17
19 20	224 243	532 33	7 a	359 602	364 559	8 11	16	115 921	67 934	761 29	4 5	295 141	264	553 489	14	114 303	1C6 330	986 510
21	64 60	521	9	291	313	3	16	238	181	45	67	115	127	176	16	294	107	509
••			ii	689	671	29	20	340	347	493		304	325	6	18	285	363	29
ò	645 720	24	13	334	353	521	22	586	605	527	10	820	804	530	20	350	376	528
2	812 841 370 392	25 987	14	281 208	256	989		2,	1.1		11	66 • 678	695	31	21	303	33d 267	19
3	992 451 1636 1492	11 997	- 16	1191 760	1233 863	20 510	0	384 365	423	993 992	13	225	211	527 72		2	.2.1	
5	1270 1206	526	18	158	116	935	Š	386 74 H	378	499	15	66	25	504	0	932 322	753	5e6
Ĩ	1303 1179	+87	.,					562	523	12	17	66	73	66	ż	895	1030	14
9	767 692	492	o	321	319	532	6	504	438	522	19	141	128	902	•	184	222	33
10 11	1128 1034	51è 522	1 2	502 257	514 277	41 19	7	417 510	418 534	517		7,	1.L		5	1980	203	16 947
12	602 588	22	3	236	204	21	9 10	141 166	103	978 494	C 1	469 206	471	998 51	7	373	289 74	956 976
14	1017 1034	11	5	898	926	528	11	.141	120	469	2	56	30	470	ý 10	711	672	521
16	546 568	9990	7	909	3C7	23	13	395	403	10	4	115	58	433	11	587	571	46
17	374 361	567	8 9	263	269	511 303	14	432 600	363 540	500 520	5	390 706	461 716	530 517	12	449 65	+ 62 • 55	761
19	64+ 78	472	10	486	486	23	16	243	245	28	7	554	586	17	14	114	51	565
21	372 357	46	12	158	155	539	18	457	466	225	Ŷ	447	406	23	16	276	304	37
22	452 473	532	14	64 •	45	941	20	182	189	25	11	437	411	531	18	583 398	426	2
0	3,0,L 1648 1737	14	15	355	378	42 265	21	66. 66.	32 48	677 415	12	226 163	227	990 507	19 20	114 182	102	505
1	614 613	510	17	335	351	552		٦.			14	177	192	506	21	429	502	526
3	358 403	11	•	8,	0.L		0	2311	2409	16	16	141	124	49		3	, Z, L	
- 5	410 362	506	1	539	527	523	2	66C	667	521	.,	115		911	1	330	371	12
7	367 335	1	3	64+	16C2 66	501		990	971	522	0	968	941	24	23	339 270	379 259	510
8	683 664 177 172	9 505	4	112	122	498	5 Ó	200 596	212 631	15 39	1 2	293 678	364 691	45 518	4 5	220	246 196	42
10 11	1093 1039	515	67	112	155	2	7	664 299	56 316	997 3	3	393 115	337	19 902	67	260	332	541
12	974 982	19	8	237	231	525	9	226	241	3	5	592	588	537	8	114	55	480
14	572 614	507	10	1097	1065	15	i ii	221	219	506	. 7	289	277	46	10	478	444	28
16	137 134	948	12	64.	57	955	13	231	223	494	9	66	64	132	12	434	460	525
18	363 370	492 50C	13	495	505	519	15	371	484 343	517	10	270	202	529	14	295	337	23 986
19 20	64+ 27 542 553	706	15	137	113	523	16 17	974 146	1005	528 14	12	596 141	590 132	30 35	. 15	299 265	3C6 26C	517
21	275 289	511	•	9, 551	0.L	549	18	664	65	304	14	342	336	507	. 17	66	• 85	973
••		,,,,	1	344	323	502	20	568	592	30		440		35	19	66	79	76
o	759 720	514	3	589	564	12	22	335	349	565	G	206	191	527	20	205	235	530
1 2	1333 1383	23C	4 5	493 269	510 315	37 528		÷.,	1,1		· 2	115 218	110	522 504		.4	, ż, L	
3	700 701	495	67	512	473	551	0	452	455	21	3	685 372	692	12	0	239	273	36
5	1349 1275	520	8	112	69	35	ž	387	393	513	5	231	198	514	ž	659	665	559
7	977 975	11	10	362	212	211 61	4	141	120	976	- 7	150	139	672 517	3	1258	122	515
8	1304 1271 409 390	7	11 12	317 318	295 328	557	5	1094	1101	19 45	8 9	115 360	105 376	18 507	5	23C8 2181	2283 2132	15
10	1519 1513	524	13	227	211	507	7	1089	1052	515	10	198 428	184	494	7	1982	1952	513
12	381 414	987	-	10	L	~	9	141	145	973	iż	66	38	563	9	675	672	994
14	289 269	4	1	188	197	12	11	285	249	61		10	1.1.1	<u> </u>	10	114	101	306
15 16	112 115 615 600	153 20	23	690 499	671 511	8 7	12	182	178 164	27 538	0	199 175	2C1 155	537 116	12	338 622	33a 585	484
17	112 144	619	4	220	199	1 494	14	664 412	22	270	ź	126	106	26	14	372 817	373	12
19	237 27	i	6	749	167	13	16	64	55	929		182	163	39	16	408	435	558
	0.4 110	· · · · ·		204	2	267			126	24	,	240	,,,,	240				

.

Table 5 (cont.)

16 17	4+2+L 408 439 685 711 902 897	968 33 17	5 6 7 8	66* 241 114 267	37 256 110 243	135 78 980 10	15 16 17 18	145 965 168 168	144 897 180 171	31 30 514 952	5 6 7 8	578 284 279 68•	525 217 241 54	39 562 550 503	18 17 18	116 116 335	117 127 296	55G 456 5C1
19 20	786 782 162 142 5+2+L	51C 1C	9 10 11	66* 654 66*	8 6C4 £5	876 541 447	19 20	179 543 4,3	111 506	525 533	9 10 11 12	68• 599 168 564	53 542 167 527	658 32 96 532	C 1 2	4,4 67• 632 201	+L 54 675 23C	652 29 25
0	422 482	534	0	101 438	2.L 4C4	10	0	324 344 303	352 338	526 38	0	9, 68.	3,L	45	3 4 5	279 260 732	34C 283	456
3	185 202 140 190	522 477	23	114	45	993 523	3	199 118	186	21 472	1 2	145 118	119 87	20 2	67	67• 734	12G 7C4	\$19 22
5	443 531 140 142	33 576	5	405	368	14	5	831	899 97	522	3	524 184 205	489	514 526	8 9	775 284	798	10
8	254 310 199 199	502 543	0	0.3	94 94	,,,	8	234	245	519 466	67	118	106 88	51 20	11	634 358	614	535
10 11	663 638 358 393	23 39	1	241 357	235	516 12	10	396	382 178	21	8	•84	36	535	13	116	81 194	51
12	324 352 114 87 215 207	541 534	7	188 145 252	187	512 998 501	13	145	150	532 53 839	0	4502 402	4714 362	12 546	16	448	4C8 136	25 611
15 16	353 348 66• 83	539 104	11	145 503	132	27	15 16	341 68•	317	35 433	4	499 67•	435 137	971 314		5,4	L	
17	351 336 66• 44	4C 724	15	270 68•	248	26 63	17	415	390	541 22	10	758 648 7126	680 624 7210	10 547	0 1 2	67• 67•	63 64	158
19	6,2,L	70	21	68•	67	564	17	5,3	201 9,L		14	780 67•	172	504 705	3	510 271	461 280	18
0	1495 1453 66* 20	18	0	1,3	142	598	0	145 728	164 863	582 523	16	219	251	476	5	668 461	764	529
234	175 755 1596 1569 114 91	995 507 621	2	394 306 759	426 331 763	42 24 12	3	418	422	511 497	0	232	194 56	18 546	5 9	142	14å 120	532 470
5	236 284 459 499	496 31	4	118 1190	163	426 525	5	239 199	216 193	74 548	2	201 67•	190	510 527	10 11	67.	110 d2	567 641
7 8	66• 3 487 499	315 8	67	938 807	951 853 50	519 25	7 5 4	252	250	970 512	5	164	165	590 32 507	12	67+ 142 116	51 157 124	242
10 11	353 337 331 319	965 508	9 10	145 708	163 811	444 21	10	1303	1190 575	17	78	142 250	153	535 21	15 16	524 328	- 74 330	34 536
12	710 659	26	11	685 145	620 126	539 587	12	258 374	198 391	524	9 10	67 • 304	81 252	15 521	0	6,4		460
15 16	738 742 367 361	514 54C	14	380 790	295 366 775	514 30	15 16	217	238 457	544 475	12	67 • 67 •	130	570	1 2	246	282	512
17 18	488 5C8 379 391	9 22	16	08• 736	70 710	186 536	17 18	394 172	349 121	43 9	14	116	64	62 532	3	587 1002	6C1 975	14
0	7,2,6	33	19	249 361	251	12	0	6. 738	3.L 7#1	534	10 17 18	110 67• 116	1 E J 51 122	112	5 6 7	183	230	548 944 13
1 2	114 99 229 215	669 523		2,3	9.L		1 2	145 350	121 369	33	19	142	135	537	8	477 67•	458 95	13
3	455 449 66• 91	521 953	0	338 321	333	492	3	68• 213	28 220	518 60	0	2, 412	4,L 416	37	10	351 531 264	314 45C 232	39 11 670
67	66+ 80 1105 1108	86 522	3	292 584 313	230 578 370	11	67	145	131 28#	652 497	2	183 534	186	974 17	13	307	238	528 569
8 9	192 234 250 247	12	5 6 7	606 344 336	659 416	51ð 22	8 9	279 168 752	277	507 6 34	4 5	992 918	922	996 534	15	229	224	25
11	215 192 140 154	94 39	8 9	368 176	353	516 485	11 12	68• 586	75	553 534	7	431 821	420	468	С 1	246 307	268 321	536 56
13	267 285	995 323	10	168 155 262	148	994 978	13	232	210	25 601	10	450	346	485	23	183	220	22
16	664 40	676	13	418	366	511 999	16	315	307	58	12	399 218	419	28	5	636 67•	678 42	400 534 665
0	8,2,L 301 289	18	15	518 249	492 206	22 530	o	7. 248	295	497	14 15	812 1049	748 969	13 23	7	60.2 223	596 196	28 514
2	265 274 280 289	27 5 10	18	464	410	26	2	145	156	0	17	313 360	311	985 570 22	10	874 396 429	371	332
4	66• 26 199 227	839 532	20	163	146	530	4	68• 473	43 414	602 33		3,	4.1		12	116	146	541
6 7 8	641 634 353 398 125 120	14 498 20	0	2193 68•	2218 45	517 8	6 7 8	490 495 208	515 540 209	21 518 526	0	410 758	1129 380 742	19 514 517	0	8,4 352	372	552 537
9 10	267 267 462 457	499 997	23	467 172	438 131	30 23	9 10	554 68+	489	520 538	3	296 328	272	15 992	23	1132 67•	1136	11 458
11	114 134 595 602	559	4	773	827 225	25 515	11	306	335	35 481	5	340	273	510 475	4	67•	66 43	492
14	824 798	15	6 7 8	68+ 206	28 21C	18	14	237	246	8	8 9	450	493	11	6 7 8	460	445	4 535
0	9+2+L 800 747	40	10	68• 291	14	33 75	°.	883 883	814	526	10	800 233	740	524 18	-	9,4	1.L	
2	664 34 405 399 182 249	889 535 511	11 12 13	220 1286 118	226	7 523 989	1 2 3	347 589 295	301 581 292	20 571	12	178 378 452	720	23 524 509	0 1	533 296	430 247	555 5C3
4	140 131	607	14	370	358	997	4	68+	67	387	15	290	275	22				

* Column 1, running index L; column 2, $|F|_{obs}$, an asterisk following the value indicates an unobserved reflection; column 3, $|F|_{calc}$; column 4, calculated phase angle in millicycles.

Table 6. Bond lengths (Å), each with its standard deviation and estimated Pauling bond strength

					Cation	IS				
Anions	(Mn,Ca)	Mn	Al(1)	Al(2)	(Mg,Al,Fe)	Si(1)	Si(2)	Si(3)	(As,V)	ΣII‡
O(1)	2·189 ± 7 0·5*		1·904 ± 7 0·5*			1·623 ± 8 1·0*				2.0
O(2)		2.127 ± 7 0.5*		1·888 ± 7 0·5*			1·604 <u>+</u> 8 1·0*			2.0
O(3)	(2.403 ± 8) 0.0		2·006 ± 8 0·5†				1·631 <u>+</u> 9 1·0			2.0
O(4)			·	1·934 ± 9 0·5†		1·644 ± 9 1·0				2.0
O(5)	2.305 ± 10 0.3^{\dagger}				$\begin{array}{c} 2 \cdot 189 \pm 10 \\ 0 \cdot 3 \end{array}$				1·721 ± 10 1·1*) 2.0
O(6)		2.305 ± 10 0.25^{+})		2.055 ± 10 0.4			1·631 ± 10 1·0*)	1.9
O(7)		(2.514 ± 9) 0.0	I		1·970 ± 10 0·45†	1·657 ± 10 1·0				1.9
O(8)	(2.473 ± 8) 0.0						1·649 ± 9 1·0	1·647 ± 9 1·0*		2.0
O(9)		2·127 ± 9 0·5							1·675 ± 9 1·4*	1.9
OH(1)			1·853 ± 9 0·5†							1.0
OH(2)				1·883 ± 8 0·5†						1.0
OH(3)	$\begin{array}{c} 2 \cdot 207 \pm 8 \\ 0 \cdot 4 \end{array}$				1·940 ± 9 0·45†					1.3
Σl_{*}^{\pm}	2.0	2.0	3.0	3.0	2.5	4·0	4.0	4·0	5.0	
Cation	5	5	6	6	6	4	4	4	4	
coordination number	$(\overline{7})$	(6)	-		-			-		
Average	2.239	2.198	1.921	1.902	2.011	1.637	1.622	1.639	1.698	
bond length	(2.296)	(2.250)				·				

* Two bonds for cation, one for anion.
† Two bonds for cation, two for anion.

 $\ddagger \Sigma I = sum of Pauling bonds emanating from cation. \Sigma II = sum of Pauling bonds reaching anion.$

Table 7. Oxygen approaches less than 3 Å in ardennite

Standard deviations = 0.01 Å.

As in Fig. 2, the primes represent atoms in sites that are transformed as follows: $xyz' = \bar{x}, \bar{y}, \bar{z}; xyz'' = 1 - x, \bar{y}, \bar{z}; xyz''' = x, y, \frac{1}{2} - z; xyz^{iv} = 1 - x, \frac{1}{2} + y, \bar{z}; xyz^{vi} = 1 - x, \frac{1}{2} + y, \bar{z}; xyz^{vii} = x, \frac{1}{2} - y, z; xyz^{viii} = x - 1, 1 + y, z; xyz^{ix} = x - 1, \frac{1}{2} - y, z.$

Around Al(1)				Around Al(2)			Around (Mg,Al,Fo	Empty octahedi around ($\frac{1}{4}0\frac{1}{2}$)	ron)	
Two	O(1) - O(3)	2.83	Two	O(2) - O(4)	2.67	Two	O(5) - O(7)	2.91	3 sides as in oct.	Al(1)
Two	O(1) - O(3')	2.70	Two	O(2) - O(4'')	2.73	Two	O(5) - OH(3)	2.82	3 sides as in oct.	Al(2)
Two	O(1) - OH(1)	2.67	Two	O(2) - OH(2)	2.71	Two	O(6) - O(7)	2.91	1 side as in tet. Sid	a) `´
Two	O(1) - OH(1')	2.64	Two	O(2) - OH(2'')	2.63	Two	O(6) - OH(3)	2.89	1 side as in tet. Si	2)
Two	O(3) - OH(1)	2.93	Two	O(4) - OH(2)	2.91	Two	O(7) - OH(3)	2.91	O(1) - OH(2'')	2.89
Two*	$^{\circ} O(3) - OH(1')$	2.52	Two*	O(4) - OH(2'')	2.47	*	O(7) - O(7''')	2.68	O(2'') - OH(1)	2.94
10			2.00	0(1) 011(-)		*	OH(3) - OH(3''')	2.53	O(3) - O(4'')	2.93
Aver	age of 10	2.75	Avèra	age of 10	2.73		011(0) 011(0)		OH(1) - OH(2'')	2.69
Aver	age of 12	2.71	Avera	age of 12	2.69	Aver	age of 10	2.89		
					- 07	Aver	age of 12	2.84	Average of 4	2.86
	Around Si(1)			Around Si(2)			Around Si(3)		Around (As,V	/)
	$O(1^{iv}) = O(1^{v})$	2.60		$O(2'') = O(2^{vi})$	2.66		$O(6) - O(6^{vii})$	2.74	$O(5^{viii}) - O(5^{ix})$	2.83
Two	$O(1^{iv}) = O(4)$	2.68	Two	O(2'') = O(3)	2.71	Four	O(6) - O(8)	2.68	Four $O(5^{viii}) - O(9)$	2.77
Two	$O(1^{iv}) - O(7)$	2.74	Two	O(2'') - O(8)	2.61	r our	O(8) - O(8''')	2.57	O(9) - O(9)	2.73
1	O(4) = O(7)	2.58	1.110	O(3) - O(8)	2.56		0(0) 0(0)	20,		
	0(1) 0(1)	200		0(0) 0(0)	200	Aver	age of 6	2.67	Average of 6	2.77
Avera	age of 6	2.67	Avera	age of 6	2.64	11,011		207	i i i i i i i i i i i i i i i i i i i	
			Other dis	tances: O(1)-O O(8)-O	H(3'') (9)	2·87 2·97	O(9) —OH(1) OH(2)-OH(3)	2·69 2·80		

* Shared edge.

expected to show a (001) cleavage that would cut through the strong bonds of the sheets. A perfect (001) cleavage is, however, reported for epidote throughout the literature and was discussed at length in the papers describing the epidote-structure determination. We tested the cleavage of epidote crystals from many localities and not once did we observe a (001) cleavage plane. If it exists at all, and is not just a misprint in the literature, it must be extremely difficult to produce. The (100) cleavage parallel to the chains, imperfect in epidote, is perfect in ardennite.

All the coordination polyhedra are normal except those about Mn^{2+} and (Mn^{2+}, Ca) for which a regular octahedral environment is expected. One of the six Mn-O bonds is 0.3 Å longer than the average bond length of the other five (Table 6), leading to a distorted octahedron around Mn. The five nearest bonds emanating from (Mn,Ca) have a configuration similar to that of the shortest five Mn-O bonds. There are, however, two next-nearest oxygen atoms only 0.2 Å farther away than the average (Mn,Ca)-(O,OH) bond length. Including them would give sevenfold coordination (six O and one OH). We may therefore expect ardennite to show unusual magnetic properties, and a study of its magnetic susceptibility down to liquid-helium temperature is under way.*

The original question, whether all the As and V ions that are present in ardennite substitute for Si, received

* Note added in proof.: - Dr F. Senftle and coworkers have observed antiferromagnetism below liquid nitrogen tempera tures.

a negative answer. An $(As, V)O_4$ tetrahedron, sharing two of its corners with (Mg, Al, Fe) and (Mn, Ca)polyhedra and the other two with Mn polyhedra, exists in the structure. It is readily identified by its peak height in the *E* map (Table 3) and by the metal-oxygen bond lengths (Table 6). In addition, the assumption that all As and V are in the 2(b) space-group position, and the consequent choice of scattering factors, led to normal values for the temperature factors (Table 3). The slightly low *B* value of Si(1) suggests that this isolated Si(1) tetrahedron is the most likely one to incorporate any excess of As and V.

We therefore looked at the chemical data in the literature and transformed the analyses considered most reliable by Senet & Moreau (1965, p.560) to structural formulae for (O+OH)=56 (Table 8). As and V form a complete series of solid solutions. The amount of Ca substituting for Mn also varies within wide limits. Both (Mn, Ca) and (Mg, Al, *etc.*) positions show surprisingly large and unexplained variations from the expected values of 4 each, and their sum, instead of being 8, ranges from 6.90 to 8.65. In conclusion, it is fair to state that starting with the available chemical analyses one could hardly have arrived at the correct structural formula given above.

The temperature factors of the anions are normal (Table 3), except that of OH(2), which is much too low. Only complete substitution of F for OH(2) could possibly account for it, but the chemical analysis of our specimen (Tables 1 and 8) indicates that not more than 4 at.% of F is available for replacement of OH(2).

Fig.2. Projection of refined ardennite structure on (010). Note that the coordinates given in Table 3 refer to an origin at the midpoint of the c repeat in this figure. Unprimed atoms refer to coordinates given in Table 3; primed atoms are defined in legend of Table 7.

Table 8. Chemical analyses of ardennite written as structural formulae, so that (O+OH) = 56

All samples are from Salm-Château, Belgium, except No.5, which comes from Ceres, Val d'Ala, Piemont, Italy. Only full analyses were used. Two decimal places are given throughout; they are not to be considered a reflection on the quality of the individual analysis. Each analysis contains 4 Mn, 8 Al, and 6 Si in addition to the amounts shown below.

1	$\begin{array}{c} 4(Mn,Ca)\\Mn & 3\cdot53\\Ca & 0\cdot49\\\hline & \overline{4\cdot02} \end{array}$	$\begin{array}{c} 4(Mg,Al,Fe^{3+}) \\ Mg \ 2 \cdot 00 \\ Al \ 0 \cdot 60 \\ Fe \ 0 \cdot 40 \\ Cu \ 0 \cdot 12 \\ \hline 3 \cdot 12 \end{array}$	$2(As, V) As 1.81 V 0.19 \overline{2.00}$	4(Si, As) Si 3·87	12(OH) OH 11·79 F <u>0·16</u> <u>11·95</u>	O 44 O 44•05	Analyst C.O.Ingamells	Reference Present paper
2	$\begin{array}{c} Mn & 3.90 \\ Ca & \frac{0.44}{4.34} \end{array}$	$\begin{array}{ccc} Mg & 1 \cdot 19 \\ Al & 1 \cdot 77 \\ Fe & 0 \cdot 32 \\ Cu & 0 \cdot 15 \\ \hline 3 \cdot 43 \end{array}$	$\begin{array}{c} \text{As} 1.80 \\ \text{V} \begin{array}{c} 0.20 \\ \hline 2.00 \end{array}$	Si 3.83 As 0.25 4.08	OH 11-83	O 44·17	O. Vandenberg	Semet & Moreau (1965)
3	Mn 3.50 Ca 0.43 3.93	Mg 1.18 Al 1.56 Fe 0.16 Cu 0.07 2.97	$\begin{array}{c} \text{As} & 1.99 \\ \text{V} & \underline{0.20} \\ \hline 2.19 \end{array}$	$\begin{array}{ccc} \text{Si} & 3 \cdot 60 \\ \text{As} & 0 \cdot 40 \\ \hline \hline 4 \cdot 00 \end{array}$	OH 11·70	O 44·30	O. Vandenberg	Semet & Moreau (1965)
4	Mn 3.82 Ca 0.95 Fe ⁺² 0.27 5.04	Mg 1.04 Al 2.19 Fe ⁺³ 0.03 3.26	As 0.76 V <u>1.12</u> <u>1.88</u>	Si 4·00	OH 11.80	O 44·20	B. Gossner & H. Strunz	Gossner & Strunz (1932)
5	$\begin{array}{c} Mn & 1.51 \\ Ca & \frac{2.08}{3.59} \end{array}$	Mg 2.08 Al 1.15 Fe 0.81 Cu 0.20 4.24	As 0.87 V 0.06 P+5 0.04 Si 0.24 1.21	Si 4∙00	OH 12-51	O 43·49	F.Zambonini	Zambonini (1922)
6	Mn 2.66 Ca 0.53 Fe ⁺² 0.19 3.38	Mg 2.68 Al 1.92 Fe ⁺³ 0.14 Cu <u>0.06</u> <u>4.80</u>	As 1.79 V 0.19 1.98	Si 3.62 Al <u>0.38</u> 4.00	OH 12·08	O 43·92	W. Prandtl	Prandtl (1905)
7	$\begin{array}{c} Mn & 3.87 \\ Ca & 0.81 \\ \hline 4.68 \end{array}$	Mg 1.56 Al <u>1.94</u> <u>3.50</u>	$\begin{array}{c} \text{As} 0.19 \\ \text{V} \frac{2.12}{2.31} \end{array}$	$\begin{array}{ccc} \text{Si} & 3 \cdot 69 \\ \text{As} & 0 \cdot 31 \\ \hline \overline{4 \cdot 00} \end{array}$	OH 11.61	O 44·39	A.Bettendorff	von Lasaulx (1876)
8	Mn 4·28 Ca 0·59 4·87	$\begin{array}{ccc} Mg & 0.74 \\ Al & 1.60 \\ Fe & 0.31 \\ Cu & 0.05 \\ \hline 2.70 \end{array}$	As 1.75 V 0.13 1.88	Si 3·85	OH 12·22	O 43·78	A. Bettendorff	von Lasaulx (1876)
9	$\begin{array}{cc} Mn & 3.43 \\ Ca & 1.09 \\ \hline 4.52 \end{array}$	$\begin{array}{ccc} Mg & 2.07 \\ Al & 1.66 \\ Fe & 0.34 \\ Cu & 0.06 \\ \hline 4.13 \end{array}$	As 1·13 V 0·70 1·83	Si 3.69 Al 0.31 4.00	OH 11-81	O 44.19	F. Pisani	Pisani (1873)
10	$\begin{array}{c} Mn & 3.67\\ Ca & \underline{0.68}\\ 4.35 \end{array}$	Mg 1.76 Al 1.68 Fe 0.44 3.88	V 2·13	Si 4·35	OH 9·40	O 46·60	A. von Lasaulx & A. Bettendorff	von Lasaulx & Bettendorff (1873)
11	$\begin{array}{c} Mn & 3.74 \\ & 0.77 \\ \hline 4.51 \end{array}$	Mg 1.79 Al 1.74 Fe 0.51 4.04	V 2·12	Si 4·47	OH 9·46	O 46·54	A. von Lasaulx & A. Bettendorff	von Lasaulx & Bettendorff (1873)

854

The increased length of the *b* cell edge (5.81 Å) in ardennite over that found in other aluminum silicates with octahedral chains along **b** (5.45-5.63 in zoisite, 5.57 in kyanite, 5.61-5.64 in epidote, 5.66 in staurolite, 5.75 in allanite) is due to the substitution of the larger Mg and Fe ions for Al in about half of the octahedra that have centers on the mirror planes (001).

As can be seen on Fig. 2, a nearly regular but empty octahedron around the point $\frac{1}{4}00$ shares a face with each of two Al octahedra and an edge with each of two Si tetrahedra. The average length of the remaining four edges is 2.86 Å (Table 7), very comparable to the edge length of the other filled octahedra. The reason that no cation, M, is found at the center is ascribed to the short Al(1)-Al(2) separation, which would lead to M-Al distances of only 2.18 Å.

We thank Professor J.D.H.Donnay for his continued interest in the work. The senior author wishes to thank Professor E. Hellner, Director of the Mineralogical Institute of the University of Marburg, for his hospitality during the summer of 1966 when she was working on this problem. We are indebted to Drs W. Fischer, H. Burzlaff, and A. Kutoglu of the same institution, who helped in many ways, especially with the computations. Dr A.J. Naldrett kindly provided the hand specimen (No. S-2183) from which we obtained our epidote crystal.

References

- BELOV, N. V. & RUMANOVA, I. M. (1953). C.r. Acad. Sci. URSS, 89, 853.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- DONNAY, G. (1965). Carnegie Inst. Wash. Year Book 64, 209.
- DONNAY, G. (1966). Carnegie Inst. Wash. Year Book 65, 294.
- GOSSNER, B. & STRUNZ, H. (1932). Z. Kristallogr. 83, 415.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1966). Personal communication; see also *Acta Cryst*. 21, 435.
- ITO, T., MORIMOTO, N. & SADANAGA, N. (1954). Acta Cryst. 7, 53.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KARLE, I. L. & KARLE, J. (1966a). Acta Cryst. 21, 860.
- KARLE, J. & KARLE, I. L. (1966b). Acta Cryst. 21, 849.
- LASAULX, A. VON (1876). Neues Jahrb. Mineral. p. 363.
- LASAULX, A. VON & BETTENDORFF, A. (1873). Neues Jahrb. Mineral. p. 124.
- LIEBAU, F. (1962). Naturwissenschaften, 49, 481.
- PISANI, F. (1873). C.r. Acad. Sci. Paris, 77, 329.
- PRANDTL, W. (1905). Z. Kristallogr. 40, 392.
- SEMET, J. & MOREAU, J. (1965). Ann. Soc. géol. Belgique, 88, 545.
- STRUNZ, H. (1935). Z. Kristallogr. 92, 402.
- ZAMBONINI, F. (1922). Att. Accad. Naz. Lincei, Rend., Ser. 5, 31, 147.

Acta Cryst. (1968). B24, 855

The Configuration at C(13) in Labdanolic and Eperuic Acids by an X-ray Crystal Structure Analysis of the *p*-Bromophenacyl Ester of Labdanolic Acid

BY KARIN BJÅMER,* GEORGE FERGUSON AND R.D. MELVILLE

Chemistry Department, University of Glasgow, Glasgow W. 2, Scotland

(Received 30 August 1967)

The crystal structure of the *p*-bromophenacyl ester of labdanolic acid, determined by three-dimensional X-ray analysis, establishes the common configuration for labdanolic and eperuic acids at C(13) as (S) (Prelog's notation). The crystals are monoclinic, space group P_{2_1} , with two molecules of $C_{28}H_{41}O_4Br$ in a unit cell of dimensions a=11.55, b=6.05, c=19.90 Å; $\beta=99.0^{\circ}$. The structure has been refined by least-squares methods to a final R of 11.4% for 1672 reflexions.

Introduction

Labdanolic acid, $C_{20}H_{36}O_3$, was first isolated by Cocker, Halsall & Bowers, 1956) from Spanish gum labdanum obtained from *Cistus ladaniferus* (rockrose). The structure of this new bicyclic diterpene hydroxyacid was determined in a subsequent paper (Cocker & Halsall, 1956) as (I), but the configuration at C(13) remained undetermined.

^{*} Present address: Division of Pure Chemistry, National Research Council, Ottawa 2, Canada.